

The Human Genome Project

Dr. Manfred Zorn

April 12, 2001 School of Public Health UC Berkeley

Lawrence Berkeley National Laboratory

- Founded in 1931 by Ernest O. Lawrence
- Best known for Particle Physics, found a dozen new transuranic elements: Bk, Cf, Am, Lw, Pu, ..., Sg
- About 4000 people, 800 students, 2000 visitors
- National User Facilities:
 - Advanced Light Source
 - NERSC Supercomputing Center

NERSC - Overview

- the Department of Energy, Office of Science, supercomputing facility
- unclassified, open facility; serving >2000 users in all DOE mission relevant basic science disciplines
- 25th anniversary in 1999

UCB Seminar

Center for Bioinformatics and Computational Genomics

- Research
 - Special Analysis Tools: Fold Prediction, Phylogeny, genome comparisons
 - Compute-intensive Algorithms: clustering, phylogeny
- Development and Support
 - Large-scale Genome Annotation
 - Wet lab support for Biologists
- Public Service
 - Public databases
 - Education and Outreach, Standards

3 Questions

- What is the genome?
- Why is it important?
- What are the consequences?

The Human Genome

- **24 Chromosomes**
 - ✓ 1 22, X, Y
 - ✓ 23 pairs
- 1 Mitochondrial Genome
- 3 Billion Base Pairs
- ~30,000 Genes

How Big?

3×10^9 seconds = 95 years

Small Changes BIG Effects

- DNA modifications can have a big effect
- Radiation causes DNA damage

US Department of Energy's Long-standing program in radiation biology

UCB Seminar

Genome Project Timeline

- **1984**
 - Department of Energy and Intl. Commission on Protection Against Environmental Mutagens and Carcinogens in Alta, Utah.
- **1986**
 - ✓ DOE announces Human Genome Initiative
- **1987**
 - ✓ NIH Director establishes Office of Genome Research
- **1988**
 - ✓ NRC Mapping and Sequencing the Human Genome
 - ✓ Berkeley Lab launches Human Genome Center
- 1990 Human Genome I

Genome Timeline cont'd

- September 1994
 - ✓ First complete map of all human chromosomes one year ahead of schedule.
- May 1995
 - ✓ First genome sequenced: H. influenzae
- May 1998
 - ✓ Celera announces commercial project
 - ✓ Public effort regroups to five major centers
- June 2000
 - ✓ Joint announcement by MMGRI Celera
- February 200

UCB Seminar

Genome Projects

 1995 H. influenzae
 2 Mb

 1996 S. cerevisiae
 12 Mb

 1997 E. coli
 5 Mb

 1998 C. elegans
 100 Mb

 1999 Human Chromosome 22
 34 Mb

 2000 D. melanogaster
 140 Mb

 2000 H. sapiens
 3,000 Mb

Gene Finding

ilfkjdslfksdufpuurtwoljewkrnwensftarkthceresp whireissnalitcommonsugpoirewnnbdaradisaccha rhhjklooiuytideintoitsconstituqwertypoiuytrefvc gentcompoundsglucoseanonhgstrefgsssdfructos etransferprotsdfvgbnhnhyuiomjuyheinintooutsid eofchgfhgfhfhgellendhfdereasdfasdfljdakldalskd hbdbfsbfskdfiotueritupyuiklhfg;mkcdceihsuqtyw qgwbsuagygvbnuwoyrpeqwurhdkagdiuqwteqwo ihrwererptergksfhakjdgadbsndfquiryoiweuterjgn vsdvnshsudihfsuhfouwehosncodihtyeiqwteqwre oiewtujsdbbzvacdserdtgdhjvibiunsgtdyfhnhjkojo uywtreqgfbghjhkopwqoidhbrjgiiwhs

UCB Seminar

Gene Finding

ilfkjdslfksdufpuurtwoljewkrnwensftarkthceresp whireissnalitcommonsug poirewnnbdaradisaccha rhhjklooiuytideintoitsconstitu qwertypoiuytrefvc gentcompoundsglucosean on hystrefysssdfructos etransferprotsdfvgbnhnhyuiomjuyheinintooutsid eofchgfhgfhfhgellendhfdereasdfasdfljdakldalskd hbdbfsbfskdfiotueritupyuiklhfg;mkcdceihsuqtyw qgwbsuagygvbnuwoyrpeqwurhdkagdiuqwteqwo ihrwererptergksfhakjdgadbsndfquiryoiweuterjgn vsdvnshsudihfsuhfouwehosncodihtyeiqwteqwre oiewtujsdbbzvacdserdtgdhjvibiunsgtdyfhnhjkojo uywtreqgfbghjhkopwqoidhbrjgiiwhs

Human Genome

- 2.91 Billion bases including gaps
- 95% of the genome sequenced
- Quality about 99.95%
- 30,000 genes
- 40% genes with unknown function
- Single nucleotide changes not random and mostly outside of protein sequences

UCB Seminar

What is a Gene?

- The unit of inheritance
- A DNA sequence for a protein/RNA
- Fate

Genes "FOR" a Condition

- A rare occurrence in common observed conditions
 - ✓ Cancer
 - ✓ Cystic fibrosis, Sickle cell anemia
- A modifiable occurrence
 - ✓ PKU, Diabetes, Hemochromatosis
- A complex interaction with other genes/environment
 - ✓ Predispositions to environmental factors
 - ✓ Dyslexia, Smoking

UCB Seminar

Cause and Effect

■ One gene ⇒ one phenotype

Cystic Fibrosis

- 1/25 Americans are carriers
- 1/2500 live births (European ancestry)
- Almost 300 mutations with variable expression and population frequency

Cause and Effect

- One gene ⇒ one phenotype

 ✓ Cystic fibrosis
- One gene ⇒ many phenotypes

Cause and Effect

- One gene ⇒ one phenotype Cystic fibrosis
- One gene ⇒ many phenotypes ✓ Tyrosinase deficiency, HbS
- Many genes ⇒ one phenotype

UCB Seminar

Diseases with Many Genes Involved

- HEART DISEASE
- CANCER
- STROKE
- DEMENTIA

- **BEHAVIOR**

3 Kinds of "Cancer-causing" Genes

- ONCOGENES
 - **✓ ACCELERATOR ON**
- TUMOR-SUPPRESSOR GENES
 - **✓ BRAKES OFF**
- MUTATOR GENES
 - ✓ CONTROL THE RATE OF CHANGE IN OTHER GENES.

UCB Seminar

ALL CANCER IS GENETIC

BUT

NOT ALL CANCER IS INHERITED.

Factoids On Colon Cancer

- 80% OF TUMORS ARE IN PEOPLE WITH NO FAMILY HISTORY
- A DISEASE OF AFFLUENCE
- <u>USUALLY</u> SLOW-GROWING TUMOR (1/2 inch polyp, 5 years, plus 5-10 years more to become malignant, plus 5-10 more years for symptoms)

UCB Seminar

Colon Cancer Genetics

- FAP(Familial adenomatous polyposis-carpet of polyps)85% penetrance by 70, 1 gene
- HNPCC(hereditary nonpolyposis colon cancerfast growing, single lesion)
 50% penetrance, 4 genes

Life is the sum of ...

- Genetics
- Environment
- Education
- Opportunity
- ..

UCB Seminar

Nature and Nurture

- Psychologists tend to emphasize the overwhelming importance of the environment in human development....
- Until they have their second child.

Genes and Behavior

■ Genes predispose,

not predetermine.

MOST DISEASES AND BEHAVIORS ARE INFLUENCED BY

GENES

UCB Seminar

Information is the difference that makes a difference.

Are you better off knowing?

ELSI: Ethical, Legal and Social Issues

- Education
- **■** Intellectual property
- Privacy
- Discrimination
- Genetic testing
- Gene therapies

UCB Seminar

Questions

- What is a Genetic Disease?
- Should genetic status be protected in the eyes of the law, as sex, race, and national origin are?
- Excuse behavior based on genetic markers for mental disorders?
- Is there a right to genetic privacy?
- Limits of government involvement in genetic testing?
- How will we protect the disabled from genetic discrimination?

ELSI: A Few Good Issues

- Legal Equality: What is normal?
- Pre-implantation Testing, and Embryo Selection
- **■** Group vs. Individual Differences
- Coverage of Testing Costs
- **Family Issues in Testing**
- **■** The Data Issues:
 - **✓** Employment
 - **✓** Forensics
 - ✓ Insurance
 - ✓ Reproductive Counseling
 - ✓ Others

UCB Seminar

Types of Genetic Testing

- Pre-symptomatic
- Diagnostic
- Pre-reproductive
- Neonatal
- Judicial

Ethical Principles in Testing

- Voluntariness
- **■** Informed consent
- Confidentiality
- Privacy
- Equity

UCB Seminar

Newborn Screening

Disorder	No. of Statescl. DC, Puerto Rico, Virgin Islands
Phenylketonuria	52
Congenital hypothyroidism	52
Hemoglobinopathy	42
Galactosemia	38
Maple syrup urine disorder	22
Homocysteinuria	21
Biotinidase deficiency	14
Adrenal hyperplasia	8
Tyrosinemia	5
Cystic fibrosis	3

The PSA Test

- **Early detection of prostate tumors**
- Treatment: surgery or radiotherapy, both have risks
- Does it prolong life? WHO KNOWS!!!
- **■** Incidence of prostate cancer

Age	%
50	25
60	60
70	70
80	80+

■ % of men dying of prostate cancer: 5%!

UCB Seminar

What Drives Testing?

- Profit
- Malpractice worries
- Curiosity
- Deep needs

Test Requirements

- Accuracy
- Sensitivity
- Specificity

UCB Seminar

Problems with Screening "Healthy" People

- **False Positives**
- **False Negatives**
- Mismatch between what is known and what can be done

Impact of False Positives and Negatives

- A screened population of 1 million
- A condition affecting 5% (50,000)
- A test that has a false-negative and a falsepositive rate of 1%
- Result:
 - 500 of the 50,000 people who have the condition won't know it.
 - 9,500 people without the condition will think they do!
- WHAT ABOUT RETESTING?

UCB Seminar

Retesting

- Almost 20,000 people will have one positive and one negative!!
- 95 "poor" people who do not have the condition have tested +/+.
- This all costs money and anxiety!

Breast Cancer Gene Testing

- BRCA1 implicated in 5-10% of breast cancers
- Many mutations with little idea of phenotype
- What is the correct response to having the gene?

UCB Seminar

For breast cancer, the risk is highest for those who do NOT have the gene!

Just as likely to get the non-inherited form, which accounts for 90% of the cases.

UCB Seminar

3 Questions

- What is the genome?
- Why is it important?
- What are the consequences?